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Non-isothermal flow of a liquid film on a 
horizontal cylinder 
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(Received 6 August 1990 and in revised form 5 August 1991) 

We consider the flow of a viscous liquid film on the surface of a cylinder that is heated 
or cooled. Lubrication theory is used to study a thin film under the influence of 
gravity, capillary, thermocapillary, and intermolecular forces. We derive evolution 
equations for the interface shapes as a function of the azimuthal angle about the 
cylinder that  govern the behaviour of the film subject to the above coupled forces. 
We use both analytical and numerical techniques to elucidate the dynamics and 
steady states of the thin layer over a wide range of thermal conditions and material 
properties. Finally, we extend our derivation to the case of three-dimensional 
dynamics and explore the stability of the film to small axial disturbances. 

1. Introduction 
The flow and stability of thin, free-surface films are of importance to many 

processes arising in the fields of chemical and mechanical engineering. Non- 
isothermal films, in particular, because of their importance in coating and heat 
transfer applications, have been the source of both experimental and theoretical 
investigations for a number of years. 

The flow of heated thin films on inclined surfaces has been the subject of a number 
of studies over the past two decades. Bankoff (1971) studied the flow and stability 
of an evaporating liquid film draining down an inclined heated plate, assuming that 
the evaporating interface is always maintained at the saturation temperature. Lin 
(1975) extended this work to account for variations in the interfacial temperature 
and included the effects of variable surface tension. Spindler (1982) later considered 
the full linear stability problem, taking into account the development in the mean 
thickness of the film owing to evaporation as i t  drains down the wall, and also 
included the induced vapour shear stress. 

There have been relatively few studies in the stability of heated volatile or non- 
volatile films on horizontal substrates. Davis (1983) examined the behaviour of a 
non-volatile film on a uniformly-heated horizontal substrate. He derived the 
evolution equation describing the layer thickness, taking into account surface 
tension, thermocapillary forces, and van der Waals attractions. This analysis was 
extended to  volatile layers by Burelbach, Bankoff & Davis (1988) who, in addition 
to  those effects listed above, also included fluid evaporation and vapour recoil. They 
examined in detail the linear and nonlinear stability of the thin film, especially as 
they related to film rupture and dryout. The dynamics and steady-states of films on 
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horizontal substrates with spatial temperature variations were later examined 
theoretically by Tan, Bankoff & Davis (1990), and experimentally by Burelbach, 
Bankoff & Davis (1990). 

Another aspect of interfacial flows concerns threads or annuli of fluid. Rayleigh 
(1879) discussed the instability of a cylinder of inviscid liquid and found that 
21dllh = 0.696 for the most rapidly growing mode, where R is the radius of the jet and h 
is the disturbance wavelength. Goren (1962) examined the instability of an isothermal 
annular coating of liquid on a wire, and found, when the film is very thin, that the 
most rapidly growing disturbance had a wavelength satisfying 2nRlh = 0.707. Xu & 
Davis (1985) showed when axial temperature gradients are present and thermo- 
capillarity induces axial flow that the capillary breakup of jets can be retarded 
or suppressed entirely, depending on the magnitude of the Prandtl and Biot 
numbers. 

Here we consider the flow of a thin liquid film on the surface of a heated or cooled 
horizontal cylinder. This type of flow is important in a number of applications, 
including the extrusion of pipe or wire coatings, fluid flow over cylindrical packing 
material in chemical beds, and film flow over tubes in heat-transfer devices. 

As in the former cases, gravity, surface tension, thermocapillarity and, in the case 
of very thin films, van der Waals interactions can all be important. However, this 
flow is quite different from that along an inclined or a horizontal substrate, primarily 
because the effect of gravity on the flow depends upon the position (azimuthal angle) 
about the substrate. This spatially varying body force is also important in the 
coating flow on or inside a rotating horizontal cylinder, examined in detail by Moffatt 
(1977), Preziosi & Joseph (1988), and Johnson (1988). 

For film flow on the surface of a stationary horizontal cylinder the primary 
manifestation of this configuration is that an initially uniform unperturbed interface 
instantly becomes position dependent as the fluid begins to drain. Moreover, when 
intermolecular forces are present, the position-dependent body force can lead 
eventually to film rupture a t  a single point (as in the horizontal case) or at two points, 
depending on the magnitude of surface tension and gravity. 

I n  general, the flow properties and dynamics of the free surface of the film are 
influenced to a great extent by the thermal conditions at the surface of the cylinder 
as well as those a t  the liquidlgas interface. For an isothermal film, the liquid drains 
off the exterior of the substrate under the influence of gravitational forces, restrained 
only by surface tension and the viscous stress exerted by the substrate surface. An 
important parameter governing the film flow properties is the Bond number, a 
measure of the ratio of gravitational to  surface tension forces ; at large Bond number, 
the film will eventually flow completely off the surface. If the Bond number is small 
enough, however, the film can assume a steady-state shape about the axis of the 
cylinder. 

For a heated or cooled cylinder, the Biot number characterizes the type of heat 
transfer that occurs at the free surface. Very large Biot numbers indicate a free- 
surface equilibrium for the film, while very small Biot numbers denote an adiabatic 
film. For the non-isothermal film, interfacial temperature variations are possible and 
these may lead to surface-tension-driven flows, the magnitude of which are 
determined by a Marangoni number. For a fluid on a heated cylinder, thermbcapillary 
forces augment the effect of gravity and increase the rate of drainage from the 
substrate. If the cylinder is cooled, thermocapillary effects oppose drainage from the 
surface and it is possible to restrain the layer for even large Bond number. 

We explore the role of gravity, surface tension, thermocapillarity, and inter- 
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molecular forces on a non-isothermal film draining off the surface of horizontal 
cylindrical substrate. We study the possibility of steady states for the film under a 
variety of thermal conditions, and also investigate the early-time dynamics of the 
film. We examine the role of surface tension and gravity in determining the 
azimuthal location of local thinning for the film and investigate the influence of 
intermolecular forces in promoting rupture of these thin regions. 

We develop a two-dimensional evolution equation accounting for both azimuthal 
and axial variations to the film thickness, and using linear theory, we analyse the 
stability of the film to determine the effect of axial perturbations to the basic state 
of the thin layer. 

2. Formulation 
We consider a thin liquid film on a horizontal cylinder. In this work, we restrict 

our attention to two-dimensional flows with no axial variations. We shall investigate 
this restriction and its implications in $8 of this work. As shown in figure 1, we use 
a polar coordinate system with the cylinder centre located a t  r = 0 and the azimuthal 
angle 0 measured downward from vertical. The surface of the cylinder is located at 
r = R and is kept at a constant temperature T = T,,. The film consists of a non- 
volatile Newtonian liquid with constant material properties, bounded by a passive 
gas whose viscosity and thermal conductivity are assumed to be very small compared 
to those of the liquid; the far-field gas temperature is T,. For convenience, we define 
a new radial coordinate 5 = r -R,  so that the substrate surface is fixed a t  5 = 0 and 
the liquid/gas interface is located at 6 = h(0,  t ) ,  where t is time. The outward unit 
normal vector, n, and unit tangent vector, t ,  are 

n = ( 1 ,  - h o / r ) / N  t = (ho/r, 1 ) / N ,  ( 2 . l a ,  b )  

where N = (1 +hi/?)$.  We include the possibility of intermolecular forces in very thin 
films by augmenting the NavierStokes equations with an intermolecular potential 
function, 6.  The resulting equations are 

p(u,+u.Vu) = - V ( p + $ ) + p V u - p g ,  (2.2) 

where Q = (u, v) is the velocity vector, g = (g cos 8, g sin 0) is the gravitational vector, 
p is the pressure in the liquid, p is the density and ,u is the dynamic viscosity of the 
fluid. 

We follow Ruckenstein & Jain (1974) and write the potential function as 

A 
h3‘ 

$ = -  

The dimensional Hamaker constant A’ is related to A by 

A’ 
6nd0 v2 ’ A = - - -  (2.4) 

where do is the initial film thickness and v = p/p is the kinematic viscosity of the 
fluid. When A’ > 0, usually called the case of negative ‘disjoining pressure’ 
(Deryagin & Kusakov 1937), intermolecular forces are destabilizing; when A‘ < 0 
(Visser 1972), these forces are stabilizing. 
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a = n  

FIGURE 1. Sketch of problem geometry. 

The continuity equation is 
v-v = 0. 

An energy balance on the film yields 

pC,(T,+v.VT) = kV2T, 

where T is the fluid temperature, C ,  is the fluid specific heat, and k is the thermal 
conductivity. A jump mass balance yields the kinematic condition for the interface, 

p(u-u( ’ ) ) .n  = 0, (2.7) 

where di) is the velocity of the interface. The jump in normal stress across the 
interface, 

balances the normal stress with the product of twice the curvature and the surface 
tension. Here, T = - p 1 + ~  is the total stress tensor, u is the coefficient of surface 
tension, and H = tW .n is the mean curvature of the interface. The shear stress at the 
surface is balanced by the gradient in surface tension: 

n. T.n = 2 H a ,  (2.8) 

n . T . t = V a . t ,  (2.9) 

where surface tension is represented by a linear equation of state 

a = a. - y(  T -  T,) ; (2.10) 

for nearly all common liquids, y > 0. The heat flux and the local interfacial 
temperature are related by 

where h,  is the film heat transfer coefficient at the interface. 

kVT.n+h,(T-T,) = 0, (2.11) 

At the substrate surface there is no slip 

u = w = o ,  (2.12) 

and a constant temperature T = To. (2.13) 

I n  addition, we require that h is periodic in 8, and specify symmetry conditions 

(2.14) 

(2 .15 )  
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and conservation of the fluid volume 

r h ( 0 ,  t )  d0 = V,, (2.16) 

where V, is the initial volume of fluid on the surface of the cylinder. 

3. Scaling 
The governing equations and boundary conditions are now non-dimensionalized. 

A characteristic lengthscale for flow in the radial (6) and azimuthal directions is the 
initial mean film thickness, do. Viscous scales are used for the radial and azimuthal 
velocities, v/R and v/do, respectively. A balance between the viscous stress and 
azimuthal pressure gradient leads to the pressure scale pv2Rld:.  A timescale for the 
flow is Rdo/v .  The temperature difference, T -  T, is scaled on its maximum difference 
AT = T,-T,. 

The scaled radial component of the equations of motion is 

€3 u,+uu +- V %--) V 2  = -PI+""l+tS[(1+ES)Ul5] 1 

( l+s& 1+€$  5 

v +3sGcosO, (3 .1 )  2 Uee - ~ 

+s4- 
(1 +4) 

1 2s3 
(1 + s t y  

where E is the aspect ratio, 

and G is a gravity number which 

The scaled azimuthal component 

compares gravitational to viscous forces, 

takes the form 

(3 .3 )  

V 1 
8 ( v,+uv +- 1+€6v~-1+E5 suv ) = -(I+p(PB+$*) 

u,+ 3G sin 0. (3.4) 
2c3 

The scaled community and energy equations are 

[ ( 1 + s t ) u l ~ + v ,  = 0, (3.5) 

and (3.6) 

respectively, where the Prandtl number, 

p = e  
k '  ( 3 . 7 )  

relates viscous to thermal diffusion. At the liquid interface, the kinematic condition 
is 
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We also have the scaled shear-stress balance 
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"( 
1 + € 6  %- 

1 
l + € p  

-") 
1 + €6 h0 

2EM 1 
[ ( 1 + 4 ) ( + ) t + i 3 ]  = -7- (Tgh!3+TB)NEY (3 .9)  

where M is the Marangoni number which measures the fractional change in surface 
tension, 

M =  (3.10) 
yATdo C ,  

2kv ' 

and for convenience we have defined 

(3.11) 

The scaled normal-stress balance is 

(3.13) where S is the Weber number S = -  (To do 
3pv2 ' 

which characterizes the mean surface tension to viscous forces and C is the capillary 
number defined by 

The scaled thermal flux 

where the Biot number, 

YAT C = - .  
VO 

condition is 

-2 

B = -  do hrn 
k '  

(3.14) 

(3.15) 

(3.16) 

conveys the quality of heat transfer occurring at the liquidlgas interface. In 
particular, B + 0 and B + 00 give the adiabatic and surface-equilibrium limits, 
respectively. 

At the surface of the cylinder, we have no slip 

u = v = o ,  (3 .17)  

and a constant temperature T =  1. (3.18) 

The symmetry conditions are given by (2 .14)  and (2 .15) ,  and the scaled volume- 
conservation constraint is 

(3.19) 
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Water 

1 .o 
1.0 x 

25 

5.8 x 104 
4.2 x 107 

72 
0.16 

10 
105 
10-13 

980.6 

Thin wire 

0.01 

0.01 

1 x 10-4 

10-2 
10 

10 
10-6 
10 

10-2 
10 
10-4 
103 
lo-' 

Large tube 

0.1 

0.01 

10 

10-2 
10 
10-9 
104 
103 
104 

10-5 

10-3 
10-13 

10 

10-1 

Mercury 

25 
13.6 
1.6 x 

1.3 x lo6 
8.4 x 104 

475 

10 
lo6 

980.6 

0.20 

10-13 

Thin wire 

0.01 

0.01 

1 x 10-4 

10-3 

10-7 
10-2 

lo2 
10-6 
10-2 

10 
10-3 

10-5 
103 
lo-' 

Large tube 

0.1 

0.01 

10 

10-3 

105 
103 

10-5 

10-3 
10-13 

10-2 
10-10 

10 

1 

10-2 

TABLE 1. Material properties and dimensionless groups for liquids at 1 atm 

As a result of the scaling, a number of non-dimensional groups appear in the 
problem. Typical numerical values and the material properties from which they were 
computed are presented in table 1 for water and mercury, coating two different sized 
cylinders. 

4. Lubrication theory 
We consider solutions of (3.1)-(3.19) when E < 1. We assume that u, v, p ,  a /a t ,  a/a& 

and a/a0 = 0(1)  as E + O ,  and further assume that h(0, t )  is an unspecified unit-order 
function. We expand the dependent variables in powers of E ,  

(4.1 a)  

(4.1 b )  

( 4 . 1 ~ )  

(4.1 d )  

substitute these expansions into the governing system, and equate to zero like 
powers of E in the equations and boundary conditions, leading to a sequence of 
problems to solve. We then solve the leading-order system to determine the 
temperature, pressure, and velocity fields as a function of the film thickness. These 
velocities are then substituted into the kinematic boundary condition to obtain an 
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equation describing the evolution of the interface. This procedure is analogous to the 
long-wave analyses used by Benney (1966) and Atherton & Homsy (1976) for falling 
liquid films and those used by Williams & Davis (1982) and Burelbach et al. (1988) 
for isothermal and heated thin liquid films, respectively. 

In  order to retain the effects of thermocapillary forces and surface tension a t  
1ea.ding order we require that ( M ,  S) = (ME-', S C - ~ ) ,  where quantities with overbars 
are O(1) as E + O .  We further require that G, P ,  and B = O(1).  Note that C = 

@2P-1A!8-1 ; thermocapillary effects do not appear a t  leading order in the normal- 
stress balance. 

At leading order in E ,  the governing system is 

PO6 = 09 (4.2) 

(4.3) 

(4.4) 

Tog = 0, (4.5) 
ht+2~,h,-u, = 0, 

p ,  = 3 A q E - l -  h - ho,), 

6 = 0 :  u,=O. a , = 0 ,  T,= 1 

- ( p ,  + $&+ vo55+ 3G sin 8 = 0, 

uog + vo, = 0. 

v,l; = - N P - ' (  To, + T , c  he), 
(4.6 a d )  

T,,+BT, = 0, 

(4.7a-c) 

6 = h(0, t )  : 

with h,,(O.t) = 0: (4.8) 

h/j(R, t )  = 0, (4.9) 

(4.10) 

The leading-order equations of motion demonstrate that the pressure is uniform 
through the depth of the film, and the viscous stress is balanced by the azimuthal 
pressure gradient and gravity. The lrading-order energy equation implies that 
conduction is the principal mode of heat transport through the film. 

We solve (4.2) subject to ( 4 . 6 ~ )  to  find the pressure in the film 

p ,  = p 0 ( 8 , t )  = 3A!7(E-'-h-h0,). (4.11) 

Equation (4.11) reveals that the pressure in the layer is equal to the surface tension 
times the sum of the (constant) curvature of the interface - owing to the cylindrical 
geometry of the substrate - and the curvature produced by the presence and 
deformation of the liquid surface. The temperature distribution is found by solving 
(4.5) subject to conditions (4.6d) and ( 4 . 7 ~ ) ,  

1 +B(h-<)  
1+Bh . 

To = 

The temperature a t  t,he free surface is then 

1 
1 +Bh' 

To@) = - 

(4.12) 

(4.13) 

Equation (4.13) indicates in the adiabatic limit ( H - t  0 ) ,  that the free-surface 
ternperaturc T,(h) = 1 ; in thc free-surface equilibrium case (B  + a), the interfacial 



Non-isothermal flow of a liquid j2m on a horizontal cylinder 175 

temperature T,(h) = 0. Substituting (4.11) into (4.3), (4.12) into (4 .6b) ,  and applying 
boundary conditions (4 .6b)  and (4.7 b )  gives the azimuthal component of velocity 

2i%fB he6 
v0 = ?j@(t2-2ht)+-  

P ( 1 f B h ) ' '  
( 4 . 1 4 ~ )  

where @( 0, t )  = - [G sin O + S( h, + ho,,) + AK4h,] .  (4.14 b )  

Combining the continuity and kinematic conditions, we arrive at an alternative form 
for the conservation of mass condition, 

(4.15) 

Substituting (4.14) into (4.15) we obtain 

h, + { h3[Q sin O+ g(h, + he,,)] + B X  - h'h, +Ah-lh0} = 0. (4.16) 
P (1+Bh)2  6 

The gravity number can be removed from (4.16) by rescaling the time variable as 
7 = Gt, leading to 

h3[sinO+Bo-'(h,+h,,,)] + B d  ( 1  h'h, +Bh)2 +dh- lh , }  = 0,  (4.17) 
e 

where dZ = X/PG and d = A / G  are an effective Marangoni number and Hamaker 
constant, respectively, and Bo is the Bond number defined by 

PgR3 
do go 

BO = -, (4.18) 

which relates the gravity forces to mean surface tension. 
Equation (4.17) describes the free-surface evolution of a thin liquid film on the 

surface of a heated or cooled horizontal cylinder when gravity, capillary, 
thermocapillary , and intermolecular forces are appreciable. This evolution equation, 
with appropriate boundary and initial conditions, obviates the need to  solve the free- 
boundary problem specified by (2.1)-(2.16).  

Although (4.17) is a strongly nonlinear partial differential equation, it may be 
solved analytically for the steady-state and dynamic interfacial behaviour in certain 
specific limits of interest. In  general, however, we must solve the evolution equation 
numerically as part of an initial-boundary-value problem with periodic boundary 
conditions and the constant-thickness initial condition 

h(0,O) = 1 .  (4.19) 

The numerical solution is realized using a Fourier spectral method with 64 spectral 
modes and time-marching accomplished using a fourth-order Hamming modified 
predi ctor-corrector method. 

5. Results - isothermal film 
Having derived a general equation for a heated or cooled cylinder, it is of interest 

first to examine an isothermal film (for which A = 0) .  I n  this case, the appropriate 
evolution equation is 

(5-  1 ) h, + {h3[sin O + Bo-'(h, + hHHO)] + dh-'h,},  = 0, 
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with symmetry boundary conditions (4.8)-(4.9) and the mass-conservation con- 
straint (4.10). 

5.1. Steady states 
5.1.1. Unit-order Bond number, d = 0 

In the absence of can der Waals forces, the steady-state form of (5.1) is 

{h3[sin B+Bo-'(h,+ hsss)]}s = 0, (5 .2)  
which is a balance between gravity and surface tension. Integrating (5.2) and 
applying symmetry conditions, we obtain an equation analogous to that for a 
harmonic oscillator forced at resonance, namely 

h,+h = 9+Bocos8, (5.3) 
where 6 is an arbitrary constant. There is no 2x-periodic film thickness satisfying 
(5.3), except when the Bond number is vanishingly small. I n  this case the solution 
is h(8) = 1; gravitational forces are negligible compared to the force of surface 
tension and the film maintains its initial configuration. Steady states are physically 
possible for films with Bo > 0, for instance in the case of pendant drops (Pitts 1973), 
but these are not well described by (5.3) because of the lubrication approximation 
used in its derivation. 

5.1.2. Large Bond number, d < 0 

When the Bond number is large and destabilizing van der Waals forces are present, 
no steady state for the film is possible since, as the film begins to  drain, surface 
tension is insufficient to restrain the flow ; moreover, the intermolecular forces 
enhance the fluid drainage, producing a 'squeeze' pressure which acts to thin regions 
of the film which are thinner than surrounding regions. 

Roughly speaking, if the dielectric constant of the solid substrate is greater than 
that of the liquid layer, then A' < 0 (Lifshitz 1956) and van der Waals forces are 
stabilizing. In this case, a steady-state balance can be written between fluid drainage 
and intermolecular forces plus surface tension : 

{h3[sin 8+Bo-'(h,+h, , ) ] -d~-'h,} ,  = 0, (5.4) 
where d = Id I. The solution of (5.4) for large Bond numbers, subject to symmetry 
conditions is 

where a1 and a2 are determined from the volume-conservation condition (3.19). As 
depicted in figure 2, as the effective Hamaker constant is increased, the film interface 
is deformed less and less from the initial shape, as intermolecular forces increasingly 
counter the deformation due to  gravity. The interface retains its initial conformation 
for large d as the gravity-driven flow downward is inhibited completely. 

I n  figure 2 and all figures depicting the film on the substrate surface, we have 
exaggerated the film thickness relative to the cylinder radius to better illustrate the 
free-surface configuration and dynamics ; the actual film thickness is 2e times that 
pictured. The evolution equation and all subsequent results were derived on the basis 
of lubrication theory and a small aspect ratio for the film; all results should be 
interpreted in this light. 
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0 

-1  

-2  

-3  - 2  - 1  0 1 2 3 

FIQURE 2. Steady-state profiles for the isothermal film when stabilizing van der Wads forces 
are appreciable. (The actual film thickness is 2s times that shown.) 

5.2. Unsteady flow 
When a steady-state configuration is not possible, or when the film is evolving 
towards a steady-state shape, the dynamics are governed by (5.1). 

5.2.1. Small Bond number - early-time dynamics 
When the Bond number is small and van der Waals forces are negligible, 

perturbation theory may be used to find the solution of (5.1) at early times. Defining 
a 'fast' timescale t"= Bo-% = gt, we find the following solution for the layer 
thickness : 

This solution breaks down as t"+ 1/Bo as the higher-order terms become comparable 
to those of leading order. Figure 3 illustrates the film dynamics at  early times. As 
time increases, the film deforms into an ellipse about the axis of the cylinder, but 
interestingly, the film thickness [to O(Bo)] always remains at its initial value a t  the 
equator of the cylinder (8  = in, -in), regardless of the time. 

The presence of the O(Bo2) term reveals the possibility of local extrema in the film 
thickness in addition to those represented in the lower-order terms. The azimuthal 
location of these extrema (which are local minima) is 

h - l - B o ~ c o s 8 + ~ B o z ( - l + e - 1 z ~ + 1 2 t " )  cos(28). (5.6) 

5.2.2. Very large Bond number, d = 0 

forces, (5.1) may be written as 

The solution of this equation can be obtained in implicit form via the method of 
characteristics. We consider the curve 

In the limit of very large Bond number (Bo-' + 0 )  and negligible van der Waals 

h,+(h3sin8),= 0. (5.8) 

dO/dT = 3h[8(7), 712 sin 8. (5.9) 
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2 7 7  

-4 -3i - 3  -2  - 1  0 1 2 3 

FIGURE 3. Early-time dynamics for the isothermal film when the Bond number is small and 
van der Waals forces are absent. (The actual film thickness is 2e times that shown.) 

Upon this curve (5.8) reduces to the ordinary differential equation 

dhldr = - h3 COS 8. (5.10) 

Equations (5.9) and (5.10) are solved subject to B(0) = 8, and h(8,O) = 1 ,  which leads 
to the following implicit form of the solution: 

(e = 8, = 0 )  I' (1 + 27); 

( 5 . 1 1 ~ )  

The time dependence of the azimuthal angle is given implicitly as the solution of 

F[g(8) ,  sin 75°]-F[g(8,), sin 75'1 + 2(3): (sin 8 , ) f ~  = 0, (5.11 b)  

where 

is the incomplete elliptic integral of the first kind whose first argument is 

3; - 1 + sin .$ 
2 + 1 -sin .$ g(5) = arccos 

( 5 . 1 1 ~ )  

(5.11 d )  

As shown in figure 4, (5.11) point out for a film with very large Bond number, that 
fluid flows from the upper hemicylinder towards a cusp point on the bottom of the 
cylinder, causing a localized thinning near 8 = 0. At larger times, the fluid drains off 
the cylinder in a thin filament a t  a position 8 = 7c. We observe that (5.11) predicts 
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- 3  I 1 z = 0.47 

- 4  - 3  L -2 - I  0 I 2 3 

FIGURE 4. Unsteady film flow for the isothermal film with Bo-’ = 0, sit = 0. (The actual film 
thickness is 2e times that shown.) 

that the film profile will become singular at 8 = 8, = K as 7 +:; however, because of 
our lubrication approximation, these equations are appropriate only a t  earlier times 
(approximately up to  T = 0.47). 

The cusp predicted by (5.11) arises because the highest spatial derivative term in 
(5.1) is omitted with Bo-’ = 0, and a boundary layer hence develops a t  0 = n. This 
boundary-layer structure may be resolved using singular perturbation theory. 
Introducing a boundary-layer coordinate 5 = (8--7c)/A into (5.1) (with d = O),  we 
find for very large Bo that the boundary-layer thickness A is 

A = O(Bo-a). (5.12) 

This thickness gives an indication of the region over which surface tension affects the 
conformation of the thin layer. The film thickness within the boundary layer h” is 
described by 

&+ EL3( - Ch”555)lC = 0, (5.13) 

which is the local form of (5.1) near 0 = x for Bo = 1 and d = 0. Equation (5.13) is 
highly nonlinear and must be solved numerically and matched as <-+oo to the 
‘outer’ solution provided by (5.11). This procedure would provide a unifmm 
approximation for the film thickness over the entire spatial domain for very large 
Bond number. Instead, in the following section we shall solve the original evolution 
equation directly for a range of Bond numbers, including the case of very large Bond 
number. 

5.2.3. Finite Bond number, d = 0 

For finite Bond numbers, the free-surface dynamics are markedly different from 
those described in the previous section. The film evolution for a layer with very large 
Bond number (Bo-’ = 0.01) and no van der Waals forces is shown in figure 5 .  The film 
interface has a smooth surface which evolves towards a pendant-drop-like shape over 
the course of time. The film thins locally and ‘necks-down’ near the bottom of the 
substrate. Over time, the drainage slows as the surface curvature of the film at the 
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FIQURE 5. Unsteady film flow for the isothermal film with Bo-I = 0 . 0 1 , d  = 0. (The actual film 
thickness is 26 times that  shown.) 
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FIQURE 6. Unsteady film flow for the isothermal film with Bo-' = 0.25, d = 0. (The actual film 
thickness is 2-2 times tha t  shown.) 

substrate base becomes large and the weight of the fluid in the drop becomes 
balanced by the force of surface tension. 

The interfacial dynamics for a smaller Bond number (Bo-' = 0.25) are illustrated 
in figure 6. In  this case, the larger surface-tension-to-gravity ratio causes the film to 
assume a more circular cross-section than in the preceding case. This circular 
interface is shifted downward owing to gravity and becomes deformed to 
accommodate the substrate, causing the film to thin locally a t  two spots in the upper 
hemicircle of the substrate. 

Figure 7 illustrates the dynamic interface position a t  a fixed time for various Bond 
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FIQURE 8. Location of local areas of film thinning as a function of the Bond number. Results 
based on the solution of the full evolution equation to a fixed time, 7 = 4. 

numbers. Notice that as the Bond number is decreased, the location of the thin 
regions moves farther and farther towards the top of the substrate (0 = O ) .  
Ultimately, as the Bond number is decreased further, the two thin regions coalesce 
into a single region at 8 = 0. The azimuthal location of the locally-thin film regions 
as a function of the Bond number is shown in figure 8. For very large Bond numbers 
(Bo-'+O) as well as small Bond numbers (Bo-' > 0.6), a single spot of film thinning 
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T = 1.6 
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Conditions U b Range, Bo-' 

.A= 0 , d  = 0 1.7 3.0 0.054.6 
A =O,d = 0.1 1.7 2.0 0.14.6 
A = 0 . 2 : d  = 0 1.8 3.0 0.054. 7 

A = - 0 . 2 , d  = 0 1.6 8.0 0 . 1 4 . 5  

TABLE 2 .  Relationship between azimuthal angle for thinnest film region, 0,, and the Bond 
number, 0, = a - b Bo-' 

is present, located at  the top of the cylinder. When the fluid Bond number is in the 
range 0 < Bo-' < 0.6, two locally-thin spots are present, and the azimuthal location 
of the thin regions decreases monotonically with increasing Bo-l. Over the range 
0.05 < Bo-' < 0.6, the relationship between the azimuthal position of minimum film 
thickness 0, and the Bond number can be represented well by the linear equation 

8, = a-bBo-l ,  (5.14) 

where a = 1.7 and 6 = 3.0 (see table 2). For Bo-' --f co, surface tension prevents flow 
completely and the film retains its initial configuration (h = l),  and thus there are no 
locally-thin regions. 

Although derived on the basis of small Bond number, it is interesting to note that 
in the limit of large Bond number, (5.7) is consistent with (5.14), with a = +X and 
6 = 12f/( - 1 +e-"'+ 12f). 

5.2.4. Finite Bond number, d > 0 

For very thin liquid films (< 100 nm), intermolecular forces can cause rupture of 
the layer a t  locally-thin regions (Ruckenstein & Jain 1974). As figure 9 demonstrates, 
the film first develops thin spots (as dcseribed in $5.2.3) which eventually become 
spots of film rupture (namely, points at which h+O).  This rupture occurs because 
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FIGURE 10. Unsteady film flow and rupture for the isothermal film with Bo-' = 0.5, d = 0.1 
(The actual film thickness is 2~ times that  shown.) 

intermolecular forces produce a negative disjoining pressure which acts on regions of 
the film that are thinner than surrounding regions. These destabilizing forces 
( c c l / h 3 )  accelerate the film interface towards the substrate as the film becomes 
thinner and thinner. 

The rupture process a t  a smaller value of the Bond number is shown in figure 10. 
As compared to the previous case, the points of film rupture have moved towards the 
north pole of the cylinder, for the same reasons as outlined previously. I n  addition, 
the rupture time is increased owing to  the slower film drainage, which is associated 
with a smaller Bond number. As in the case of d = 0,  the azimuthal position of the 
locally-thin regions is well described over a large range of Bond numbers by (5 .14)  
(See table 2 . )  

Figure 8 exhibits the fact that  the linear portion of the curve for d = 0.1 has a 
slope which is less than that portion of the curve for a? = 0 ; intermolecular forces 
destabilize the film at  early times even for small Bond numbers. Hence, in the 
presence of intermolecular forces, there may be two points of film rupture even for 
small Bond numbers. 

6. Results - heated cylinder 
When the cylinder is heated, thermocapillary forces generate a flow which 

augments that  due to  gravity. As the film thins on the upper surface of the cylinder 
owing to gravity, there is an increase in temperature in this region and a decrease in 
surface tension, inducing a flow towards the thicker, higher-surface-tension region a t  
the bottom of the cylinder. 

In the absence of intermolecular forces, the appropriate evolution equation 
describing the interfacial location for a thin liquid film on a heated horizontal 
cylinder is 

h3[sin 8 + Bo-'(h, + heee)] + B A  
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6.1, Steady states 
The presence of thermocapillarity for the heated cylinder enhances drainage from the 
substrate. Finite surface tension is insufficient to  balance the flow and no steady state 
is possible for the film unless Bo = 0, and hence h(8) = 1. 

6.2. Unsteady flow 

6.2.1. Small Bond number - early-time dynamics 
As in $5.2.1, when the Bond number is small and van der Waals forces are 

negligible, we may elucidate the early-time film dynamics. In  this case, (6.1) may be 
solved and the interfacial position given by 

h - 1 + ~ o ~ , ( i j  c o s 8 + ~ 0 2 ~ 2 ( ~ )  cos (2e ) ,  (6.2a) 

where F,(L) = 9 - 1 (  1 -.a[ ) 9  (6.2b) 

F,(L) = a,+a,e~f+a2e2ag+a3e4(8-3) t ' ,  (6.2 c )  

with 
- ( 1  +B) ( 1  +3B)  

4W [3 + 6 B  + 4B2 - 9 (1 + B)2] ' 
a, = 

( 1  +B) ( - 1 + 3B) 
3 9  [4 + 8B +a2 -9 ( 1  +B)2]  ' 

a, = 

( 1  +B)  a2 = 
9 [6 + 12B + 6B2 - a ( 1 + B )  '1 ' 

(6.2d) 

(6.2,) 

a3 = 

( 1  + B)3 [ 18 + 54B + 54R2 + 18B3 - 5 9  ( 1  + B)2 - 3BW ( 1  +B)2]  
12[3 + 6B+ 3B2 -9 ( 1  + B)'] [4 + 8B+4B2 -9 ( 1  +B)2]  [6 + 12B+ 6 B 2 - 9  (1 + B)2] ' 

(6.2g) 
and we have defined a new parameter 9, 

3CB 
2 2 (  1 + B)2  ' 

a =  

The value 9 = 0 denotes an isothermal film, while negative values indicate a cooled 
film (see $7.2.1). 

Figure 11 illustrates the O(Bo) correction to the heated (cooled) film profile at a 
fixed time for various values of 9. As the figure displays, an increase in the film 
drainage owing to increasing thermocapillarity (increasing 9 ), pushes the interface 
farther and farther away from the initial conformation, F,(O) cos 0 = 0. 

Analogous to  the result obtained in 55.2.1, the O(Bo2) term in (6.2) suggests the 
possibility of local minima for the film. The location of these minima is then given 
by 

It is instructive to compare the results from (6.4) relating the location of locally-thin 
regions for the film with those based on a numerical solution of the full evolution 
equation as illustrated in figure 8.  Although derived on the basis of small Bond 
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FIGURE 12. Location of local areas of film thinning as a function of the Bond number. Results 
based on the small-Bond-number analysis at a fixed time, f =  1.  

number, we note in figure 12 that the theory for small Bond number predicts similar 
qualitative behaviour and the same trend with regard to thermocapillary effects 
described in $6.2.2 and illustrated in figure 8. 

6.2.2. Unit-order Bond number 

The forces due to thermocapillarity augment gravity so that the flow a t  a given 
time is greater for the heated film than for the isothermal film. Figure 13 shows a 
‘snapshot ’ of the evolving film for various values of the effective Marangoni number 
a t  a fixed Bond number. (Negative values of A denote a cooled film. See $7.2.2.) At 
a given time in the film evolution, increasing the effect of thermocapillarity 
(increasing M )  increases the flow in the film and pushes the interface farther away 
from the initial configuration. 
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FIGURE 13. Dynamic heated and cooled film profiles for various values of A at T = 4.0 (B = 1 ) .  
(The actual film thickness is 2~ times that  shown.) 
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FIGURE 14. Unsteady film flow for the heated film with Bo-' = 0.2, A = 3, B = 1. (The actual 
film thickness is 2e times tha t  shown.) 

Even when intermolecular forces are absent, the film may approach zero thickness 
owing to thermocapillarity in conjunction with fluid drainage. As suggested by figure 
14, regions of the film which are thin owing to the interaction of surface tension and 
gravity ($5.2) become thinner as fluid is drawn towards the thicker, lower- 
temperature regions. This process continues until fluid becomes depleted locally and 
the film nears rupture (h  -+ 0) a t  the azimuthal location designated in figure 8. Over 
the range 0.05 < Bo-l < 0.7, (5.14) (with a = 1.8 and b = 3.0) represents the location 
of the locally- thin regions well. Relative to the isothermal result, thermocapillary 
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FIGURE 15. Unsteady film flow for the heated film with Bo-’ = 0.1,A = 5,B = 1. (The actual 
film thickness is 2e times tha t  shown.) 

forces cause the film to thin at  a location which is farther from the top of the cylinder, 
for a given Bond number; thermocapillary forces ‘pull’ fluid towards the thicker, 
cooler film region at  the bottom of the cylinder. 

If the Marangoni number is increased over that just described, thermocapillary 
forces are accentuated, and deviations from the mean film thickness, both positive 
and negative, become more and more exaggerated over time. The peculiar clover- 
leaf-like shape illustrated in figure 15 is the result of the evolution of the film under 
these circumstances. It is apparent, then, that a wide variety of interfacial behaviour 
is possible for a film on a heated horizontal cylinder simply by varying the physical 
properties of the fluid (Bo, A ). 

7. Results - cooled cylinder 
For a cooled cylinder, thermocapillary forces help to restrain film drainage : as the 

film thins at the top of the cylinder owing to gravity, the low temperature leads t o  
a large effective surface tension in this region which draws fluid up from the thicker- 
film regions. To analyse this flow, it is useful to rescale the temperature based on the 
reference temperature at  the substrate surface and then proceed as in 54. Specifically, 
the temperature difference, 2’- T, is scaled on its maximum difference AT = T, - T,, 
The scaled thermal-flux condition at leading-order becomes 

T,[+B(T,+l)  = 0. (7 .1 )  

The temperature distribution is found by solving (4.5) subject to conditions (7 .1 )  and 
(4 .7c ) ,  

B5 T,=- 
1 + B h ‘  

The free-surface temperature is then 

(7 .2)  

Bh 
1 +Bh’  

T,=- 

7 

( 7 . 3 )  

F I. M 236 
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FIGURE 16. Steady-state profiles for the cooled film with unit-order Biot number (B = 1 ) .  (The 

actual film thickness is 2 times that shown.) 

In the adiabatic limit, the free-surface temperature T,(h) = 0, whereas in the surface 
equilibrium case (B+ a), the free-surface temperature T,(h) = 1. The evolution 
equation for the cooled cylinder when van dcr Waals forces are negligible is identical 
to that derived for the heated film [equation (6.l)]  with A' replaced by -A. 

7.1. Steady states 

For the cooled cylinder. a variety of steady-state profiles may exist. The specific 
liquid properties and thermal conditions at the liquid/gas interface determine the 
resulting shape of the fluid interface. The equation 

h3[sin B+Bo-'(h,+h,,,)]-BA' (7.4) 

governs the steady-state configuration for a film on a cooled cylinder. 

7.1.1. Unit-order Biot number 

For very large Bond number, the form of (7.4) which balances gravity and 
thermocapillarity is 

[ h3 sin 8-RA = 0. (7.5) 

Equation (7.5) is solved subject t o  the symmetry boundary conditions to give an 
implicit solution for the film tjhickness, 

BJh"&+ln(&)]+cosO+y = 0, (7.6) 

where y is determined from the mass conservation constraint. The steady-state free- 
surface positions described by (7.6) arc shown in figure 16. When the effective 
Marangoni number is increased, the film interface is deformed less and less from the 
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FIGURE 17. Steady-state profiles for the cooled film with small Biot number. (The actual film 
thickness is 2e times that shown.) 

initial shape, as thermocapillarity counteracts gravity increasingly. The interface 
retains its initial conformation for large A as the gravity-driven flow downward is 
inhibited completely. 

7.1.2. Small Biot number 
A very small Biot number implies that the temperature at  the free surface is close 

to that at  the (cooled) cylinder surface. This leads to a high effective surface tension 
and a nearly circular film cross-section. For small Biot numbers, (7.4) may be written 
as 

This result describes a balance between gravity and surface tension plus 
thermocapillarity. It is possible to obtain an explicit solution for the steady-state 
film thickness from this equation when surface tension is very small relative to 
gravity. The solution of (7 .7)  subject to (4 .8)  and (4 .9)  is given by 

{h3[sin 8+Bo-l(h,+h,,)]-BAh2h,}, = 0. (7 .7)  

(7 .8a)  

where 

( B A  )2  + B A  cos 8 + sin2 8 exp (-= 2 cos 8) 
( B A  ) 3 1 ~ ( i p ~  1 2  

A(t3) = 

cost3 , (7.8b) 
1 1 ( 2 / B 4  ) - 2 B A 1 0 ( 2 / B A  ) 1 

2 ( B A  )210( l / B A  )3 (-= ) + 
and I,, is the modified Bessel function of the first kind of order n.  Figure 17 details 
the steady-state film behaviour when the Bond number is large. As shown by this 
equation, the parameter l / B A  governs the steady-state shape of the fluid interface, 
indicating that both the Biot number and the effective Marangoni number influence 

1-2 
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FIGURE 18. Large-Bond-number correction to the steady-state thickness profiles for the cooled 
film. 

the interfacial shape in a similar fashion. Increasing the parameter l / B d  shifts the 
profile downward, though the shape of the profile remains nearly circular. 

The function A ( @  corrects the steady-state balance between gravitational and 
thermocapillary forces for the existence of finite surface tension. As shown in figure 
18, the presence of finite Bo-' leads to a local thinning a t  6 = 7c, in addition to points 
of local thickening not present in the leading-order behaviour. 

7.1.3.  Large Biot number 

Large Biot numbers specify a free surface which is nearly in equilibrium with the 
environment. In  this case, the surface tension, especially a t  thicker-film regions, is 
relatively small. Therefore, the film distorts from the initial shape, especially a t  the 
base of the substrate. When the Biot number is large, (7 .4)  takes the form 

{h3[sin 8 +Bo-'(h,+ h@OO)] - ,,kdh,/B}, = 0, (7.9) 

which, for large Bond numbers, has the solution 

A " 1  2B 3B3 5B2 
A 2  

h - (x cos 6 + 6 , ) t  +Bo-' { [x" ( 1  + cos2 6) + -6 cos 6+-6: 

(8, + 2 2B cos 6 ) 4  + 6, (6,  + 

where 6, is determined as the solution of the equation 

with 

(7.10 b )  

( 7 . 1 0 ~ )  

the complete elliptic integral of the first kind; 6, is determined by the mass 
conservation constraint. From (7 .  lo), the parameter B / A  controls the steady-state 
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FIQURE 19. Steady-state profiles for the cooled film with large Biot number. (The actual film 
thickness is 2~ times that shown.) 

shape of the interface, but unlike the small-Biot-number situation, the Biot number 
and Marangoni number affect the conformation of the free surface in disparate 
directions. Figure 19 shows in this case that increasing the parameter B / A  causes 
the interface to become deformed from its initial state, especially a t  the thicker-film 
region at  the bottom of the cylinder. 

7.2. Unsteady flow 
7.2.1. Small Bond number - early-time dynamics 

Like the isothermal film and film on the heated cylinder ($552.1 and 6.2.1), in the 
limit of sma.11 Bond number and vanishing van der Waala forces, the behaviour of the 
film a t  early times may be examined using a regular perturbation analysis. I n  this 
context, (6.1) is solved and the resulting film thickness is given by (6.2) with W 
replaced by -9. 

7.2.2. Unit-order Bond number 
When the flow is unsteady, the role of thermocapillary forces is to retard the 

gravity-driven drainage from the cylinder. Figure 13 shows the film profile at 7 = 4.0 
for various values of -A. In  contrast to  the heated cylinder, as is increased, 
drainage from the film is reduced, and the interface deforms less and less from the 
initial configuration. For large enough I ,  therefore, thermocapillarity overcomes 
gravity and the film evolves to a steady-state or retains its uniform initial shape. 
Over the range 0.1 < Bo-' < 0.5, (5.14) (with a = 1.6 and b = 3.0) represents the 
location of the locally-thin regions well. Relative to  the isothermal result, for the 
cooled cylinder, thermocapillary forces cause the film to thin a t  a location which is 
closer to the top of the cylinder, for a given Bond number; thermocapillary forces 
pull fluid towards the thinner, cooler film region a t  the top of the cylinder. 
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8. Linear stability of the basic state 
The governing two-dimensional equations (2.1)-(2.16) are readily generalized to 

include variations in the axial direction, denoted by z (scaled by the cylinder radius, 
R ) .  I n  a similar manner to that detailed earlier, we obtain the two-dimensional 
analogue of (4.17) : 

h,+ (h3 sin B)s+ Bo-'V. [h3V(V2h + h ) ]  + V .  [ (BAh2(  1 +Bh)+ + d h - l )  Vh] = 0, (8 .1)  

where V = (3 /W,  3/82) is the two-dimensional surface-gradient operator. 
Throughout the analysis we have neglected axial variations to the film. We 

proceed to examine this restriction by investigating the consequence of small axial 
disturbances to  the basic state of the thin layer. I n  the general case, it is not possible 
to obtain an analytical solution for the film basic state. We shall, therefore, consider 
the stability of the film in two limiting cases for which the basic-state behaviour of 
the layer has been determined analytically : (i) the unsteady isothermal film in the 
limit of small Bond number (§5.1.1), and (ii) the steady cooled film in the limit of 
large Bond number ($7.1.2). 

Case ( i ) .  Unsteady isothermal film 

the small Bond number basic state derived earlier (equation (5.6)) ; specifically, 
I n  this case we shall investigate the special case of axial disturbances imposed on 

~ ( e , ~ )  = i-Bot"coso= 1 - 7 C O S 8 ,  (8.2) 

where the overbar denotes the basic state. We employ linear theory and perturb this 
state by a small amount h'. We therefore write 

qo,  z ,  7 )  = ~ ( 0 ,  7 )  +bye, 2 ,  7 ) ,  

h'(0, z ,  7) = H ( ~ , T )  eikz, 

(8.3) 

(8.4) 

and assume normal modes in the disturbance quantity h' of the form 

where k is the disturbance wavenumber. Substituting (8.4) into (8.3), (8.3) into (8.1), 
and linearizing in the Bond number results in a partial differential equation for the 
normal-mode amplitude H ,  

H , + B o ~ ~ [ H ~ ~ ~ ~ + ( ~ - ~ ~ ~ ) H ~ ~ - ~ ~ ( ~ - ~ ~ ) H ]  = 0. (8.5) 

The solution of (8 .5) ,  consistent with the symmetry conditions, may be written as 

( 8 . 6 ~ )  
m m 

H ( O , 7 )  = c ,  exp ( 0 , ~ )  cos (no) = C c ,  exp (52, f) cos (no), 
n-0 n-0 

where 
o h  

(8.6b) 

and the disturbance growth rate ~ ~ ( 5 2 , )  is 

Bow, = 52, = - (k2+n2)(k2+n2-1) .  ( 8 . 6 ~ )  

The maximum growth rate occurs for n = 0, 

BOW, = sZo = k 2 ( l - k 2 ) ,  

corresponding to the axisymmetric disturbance mode ; all other modes are either 
neutrally stable or stable for all k .  
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From (8.7) we note that the layer is stable for large wavenumbers (k > 1) and is 
unstable for wavenumbers in the range 0 < k < 1 .  The wavenumber k* relating to 
the maximum growth rate w* is determined to be 

1 

k* = z> 
and is identical to that computed by Goren (1962) for a thin annulus of fluid on a wire 
in the absence of gravity; the corresponding maximum growth rate is then 

Bow* = Q* = 1 4 '  (8.9) 

This analysis reveals that  a small Bond number does not destabilize the film relative 
to the film with zero Bond number. We also see that axial variations to  the layer are 
unimportant as long as 7 + 4Bo (t"+ 4), but will become significant thereafter as the 
film continues to drain. For large Bond number, drainage from the substrate is 
relatively rapid, and hence the timescale over which the film resides on the cylinder 
surface is relatively short. We therefore expect the dynamics of the layer to be less 
affected by axial variations than those for the layer with small Bond number. This 
trend is expected for the heated film as well, since thermocapillarity augments the 
gravity-driven flow off the substrate; we expect the unsteady cooled film to be more 
affected by axial variations for the opposite reason. 

Case ( i i ) .  Steady cooled film 

Here we shall examine axial disturbances imposed on the known steady basic state 
for a film on a cooled cylinder in the limit of small Biot number and very large Bond 
number (equation (7.8a)), namely, 

(8.10) 

Similar to the previous case, we perturb the basic state by a small amount, 

h(8,  Z ,  7 )  = E(0) + h'(0, Z, 7 ) ,  (8.11) 

and assume normal modes in the disturbance quantity of the form 

h'(8, z ,  7 )  = H ( 8 )  eikzfwT. (8.12) 

Substituting (8.12) into (8.11), (8.11) into (8.1), and linearizing in primed quantities 
results in an ordinary differential equation for the normal-mode amplitude H ,  

( 8 . 1 3 ~ )  

where 

$(8) = 2~in~8fBMcosB+(BA)~k~+BAexp -cos8 I .  - (;A )[ ( R : ) I 2 W .  

(8.13b) 

Taking into account symmetry conditions, we write the normal-mode amplitude as 
a Fourier cosine series, 

m 

H ( 8 )  = C bn cos (no) ,  (8.14) 
n-0 



194 B. Reisfeld and S. G .  Bankoff 

30 

leading to the equation c b, m, n) = 0, 
n-0 

where 

( 8 . 1 5 ~ )  

1 
B A  

sin2 0+ - cos 0 

+& exp (A cos 0) kO(&)]’ w} cos n8 +a n sin 0 sin (no). (8.15b) 

The stability characteristics of the liquid layer are determined from (8.15). This 
infinite series is truncated to p-modes; corresponding to  each mode is an 
orthogonality condition. Each of the orthogonality conditions is applied in turn to 
the truncated Fourier expansion to yield p-simultaneous equations for the unknowns 
b,[n = 0, . . . , p -  11. To ensure a non-trivial solution for H ,  we require the 
determinant of the coefficient matrix of b, to vanish, leading to a dispersion 
relationship between the disturbance growth rate and wavenumber. Rootfinding is 
then used to locate the wavenumber k* corresponding to  the maximum growth rate 
w * .  

For p = 1,  the dispersion relationship is found to be 

and hence 

1 + (BA ) 2 k 2  a = -  
B ~ [ Z o ( 1 / B & ) ] 2 1 0 ( 2 / B & ) ’  

(8.16) 

(8.17a, b)  

The analysis of larger numbers of modes confirms that k* = 0 and w* < 0 for all B A .  
These results suggest that the film will be linearly stable for any solution where 
thermocapillary forces are large enough to counteract gravity and to maintain a 
steady-state for the thin layer. We observe that although the stability analysis 
presented is valid only for small disturbances about the steady basic state (7.8u), it 
nonetheless confirms that ignoring axial variations to the thin film is appropriate in 
this case. 

9. Conclusions 
We investigate the drainage of a thin liquid film on the surface of a heated or 

cooled horizontal cylinder. We examine the role of gravity, surface tension, 
thermocapillarity, and van der Waals forces on the dynamics of the film, and explore 
the possibility of steady states for the film under a variety of thermal conditions. 

For an isothermal layer, we find that a steady-state configuration for the layer is 
possible only for a zero Bond number. For non-zero Bond numbers, the film is 
unsteady and we discover that areas of local thinning can develop as the film drains. 
We quantify the azimuthal location of the locally-thin regions as a function of the 
Bond number, and find that these regions move towards the top of the cylinder as 
the Bond number is decreased, until, for very small Bond numbers, two regions 
coalesce into a single region a t  the top of the cylinder. For very thin films for which 
destabilizing intermolecular forces may be appreciable, we observe that these locally- 
thin spots can become spots of film rupture. 

We discover that a wide variety of interfacial behaviour is possible for a film on 
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a heated horizontal cylinder. Thermocapillary forces augment the effect of gravity 
and increase the rate of drainage off the cylinder. When the Marangoni number is 
sufficiently large, the film thickness can become very small locally, and in the 
presence of intermolecular forces, rupture of the film interface occurs. Simply by 
varying the physical properties of the fluid ( B o , A ) ,  i t  is possible to  prevent 
(promote) film rupture depending upon the application of interest. 

If the cylinder is cooled, thermocapillary effects oppose drainage from the surface 
and we determine that it is possible to restrain the flow for even large Bond numbers. 
We examine the role of both the free-surface thermal condition (through the Biot 
number) and the fluid properties (through the Bond and Marangoni numbers) on the 
steady and unsteady interfacial shapes for the film. 

Finally, we use linear theory to determine the stability of the thin layer to small 
axial disturbances. We consider the stability of the film in two limiting cases : (i) the 
unsteady isothermal film in the limit of small Bond number, and (ii) the steady 
cooled film in the limit of large Bond number. In  the first case, we find that axial 
variations to  the layer are unimportant a t  early times, but will become considerable 
later in the evolution of the film. In  the second case, we discover that the film will 
be linearly stable for any solution where thermocapillary forces are large enough to 
maintain a steady-state for the thin layer. 
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